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SUMMARY

The nonlinear behavior of a high-temperature metal-matrix composite (HT-MMC) was simulated by using the METCAN

(Metal Matrix Composite Analyzer) computer code. The simulation started with the fabrication process, proceeded to thermo-

mechanical cyclic loading, and ended with the application of a monotonic load. Classical laminate theory and composite

micromechanics and macromechanics are used in METCAN, along with a multifactor interaction model for the constituents'
behavior. The simulation of the stress-strain behavior from the macromechanical and the micromechanical points of view, as

well as the initiation and final failure of the constituents and the plies in the composite, was examined in detail. It was shown

that, when the fibers and the matrix were perfectly bonded, the fracture started in the matrix and then propagated with increas-

ing load to the fibers. After the fibers fractured, the composite lost its capacity to carry additional load and fractured.

INTRODUCTION

High-temperature metal-matrix composites HT-MMC's have significant potential payoffs when used in hot structural com-

ponents of advanced aerospace propulsion systems. Realization of these payoffs depends on the development of the following:

(1) fabrication technology, (2) experimental techniques for measuring composite thermal and mechanical characterisite proper-

ties, and (3) computational simulations that predict the nonlinear behavior of HT-MMC's.

At NASA Lewis Research Center a computer program called METCAN (Metal Matrix Composite Analyzer) is being devel-

oped (refs. 1 to 6) to simulate the nonlinear behavior of HT-MMC's from the constituent material level to the laminate level.

The simulation capability of METCAN is shown in figure 1. The micromechanical constitutive equations used to simulate the

nonlinear thermomechanical behavior of HT-MMC's consist of products of terms with unknown exponents, as shown in fig-

ure 2. The exponents are determined for the specific material and type of nonlinear dependence. They are determined from

experimental data (if available) or are estimated from the anticipated intuitive behavior of the particular term.

Although METCAN is continually used to simulate HT-MMC behavior, it had not yet been used to simulate the nonlinear

behavior of HT-MMC laminates subjected to cyclic bending.

This report describes the computational simulation of the nonlinear behavior of an HT-MMC laminate subjected first to

thermomechanical cyclic bending and later to monotonic loading. The monotonic load was increased gradually until the com-

posite fractured. The simulation procedure is described in some detail. The initiation of local fracture and its propagation
within the laminate were examined. The results obtained are summarized and discussed in order to demonstrate the potential

capabilities of METCAN in these types of simulations.

COMPUTATIONAL SIMULATION

The HT-MMC consisted of three plies with orientation 0°/90°10°. The thickness of the 0 ° plies was 0.05 in., and the thick-

ness of the 90 ° ply was 0.10 in. The composite consisted of silicon carbide (SIC) fibers with a fiber volume ratio of 40 percent

in a Ti-15-3 matrix. The material properties of the Ti-15-3 and of the SiC were taken from the data bank available in

METCAN and are shown in table I. The fibers were continuous and were assumed to be perfectly bonded to the matrix at the

interface. The computer code can compute the temperature dependence of constituent properties at any temperature; the mate-
rial properties of the composite constituents were given at room temperature. In addition METCAN can compute the global



propertiesatalaminatelevelbyusingmacromechanicsandthelocalpropertiesattheplylevelbyusingmicromechanics.The
simulationstepsareshowninfigures3and13andaredescribedhere.

FabricationProcess

Thecompositewassubjectedtoahightemperature(Tc--1750°F, close to the matrix consolidation temperature of 1800 °F)
and gradually cooled to room temperature (0.04T c = 70 oF).

Combined Cyclic Thermal and Bending Loads

The applied thermal cycles were 75 percent of the default allowable thermal cycles (Ntf _ 400 cycles) in METCAN. The

applied mechanical (bending) cycles were 1 percent of the default allowable mechanical cycles (Nnff _- 104 cycles) in
METCAN. Both the uniaxial tensile and bending loads were applied simultaneously.

Monotonic Load

Two different types of monotonic loads were applied and examined separately. In the first case a uniaxial tensile load Nxx
was applied along the 0 ° ply direction (fig. 3). The applied load was increased slowly until the composite failed at 44 percent

of the ultimate load N u (26 000 lb/in. = Umat-Ultt," where °mat-Uhis the tensile allowable strength of the matrix at room temperature

and t is the thickness of the laminate). In the second case a pure bending load Mxx was applied (fig. 13). The bending load
was increased slowly until the composite failed at 95 percent of the M u value (M u = 866.67 lb in./in. -- _ult t2/6, where _ult

°mat Omat
and t were defined above).

Note that local failure was defined as when the local constituent stress exceeded the fracture stress for that constituent (maxi-
mum stress criterion).

Values of the exponents that are used in the multifactor interaction relationship (fig. 2) were computed from the constituent
experimental data whenever possible. If data were not available, default values obtained from studies conducted on other

metal-matrix composites were used. The default values of the exponents for the constituent materials that were used are shown
in table II.

RESULTS AND DISCUSSION

The following results refer to the stage where the monotonic load was applied and increased slowly until the composite

failed. This was after the laminate had been subjected to the fabrication process and thermomechanical cyclic loading.

Uniaxial Tensile Load

The laminated composite that was subjected to monotonic uniaxial tensile loading with the structural coordinates x, y, and z

and a single fiber with the surrounding matrix and the material coordinates 1, 2, and 3 are shown in figure 3. Note that the

figure shows equal thicknesses for the three plies although the middle ply was twice as thick as the top and bottom plies.

Evolution of fracture in composite.--Prior to monotonic uniaxial loading the thermomechanical cyclic load was applied. At
the end of thermomechanicai cyclic loading the bottom (0 °) ply fractured in the transverse direction within the matrix in

region A, When the monotonic uniaxial tensile load Nxx was applied and the stress ratio

Nxx

(Composite thickness)(Matrix tensile strength)



reached 0.11, the middle (90 °) ply fractured in the longitudinal direction within the matrix in region A. At a stress ratio of 0.15

the bottom (0°) ply fractured in the longitudinal direction within the matrix in regions A and C. When the stress ratio was

increased to 0.36, the top (0 °) ply fractured in the longitudinal direction within the matrix in regions A and C. At a stress ratio

of 0.37 the middle (90 °) ply fractured in the transverse direction within the matrix in region C. Finally, when the stress ratio

reached 0.44 high longitudinal stresses developed in the middle (90 °) ply within the matrix in regions A and C and fracture

occurred. Also the fibers broke in the bottom (0°) ply in the longitudinal direction because stresses exceeding the fracture

stress of the fibers developed when the surrounding matrix broke and the entire applied load was transferred to the fibers. The

composite then fractured because it could not carry any additional load.

The evolution of the fracture that took place in the composite due to the uniaxial load is shown in tables 171and IV for the

matrix and the fibers, respectively. Note that the results shown in the tables are referred to the material coordinates 1, 2, and 3.

Stress-strain behavior of composite, plies, and constituent materials.--The stress-strain behavior of the composite under

tensile loading is shown in figure 4. The failure modes of the composite at applied stress ratios of 0.11, 0.15, 0.36, 0.37, and

0.44 are shown in figure 3 and correspond to the points M1, M2, M3, M4, and Failure, respectively, in figure 4. When the

stress ratio reached 0.44, the constituent materials failed and the composite fractured.

Longitudinal behavior of top (0 °) ply: The longitudinal stress-strain behavior of the top (0 °) ply, as well as of its constituent

fiber and matrix, is shown in figure 5. At the indicated point M3 (fig. 5(a)) at a stress ratio of 0.36 the matrix fractured in the

top ply in the longitudinal direction in regions A and C; and at a stress ratio of 0.44 (failure poin0 the ply fractured.

At the indicated failure point the developed longitudinal ply stresses were equal to 98.46 ksi, much greater than the allowable

tensile strength of 74.69 ksi. The linear stress-strain behavior of the fiber is shown in figure 5Co). At an applied stress ratio of

0.44 the developed longitudinal stresses were equal to 181 ksi, less than the allowable tensile strength of 186.7 ksi. Note that

the fiber longitudinal modulus, which is the slope of the curve in figure 5Co), was lower than the corresponding modulus at

room temperature (reference input data). The reason is that the number of thermocycles (300 cycles of input data) was 75 per-

cent of the default ultimate number of thermal cycles assumed in METCAN. This contributed to rapid degradation of the

mechanical properties of the constituent fiber and matrix, lowering the moduli of the constituents.

The linear stress-strain behavior of the matrix for both regions A and C is shown in figure 5(c). At a stress ratio of 0.36

(point M3) the matrix fractured. At the indicated point M3 the developed longitudinal stresses were a litde greater than the

allowable tensile strength of 43.17 ksi.

Transverse behavior of top (0 °) ply: The transverse stress-strain behavior of this 0° ply, as well as of its constituent fiber and
matrix, is shown in figure 6. The stress-strain behavior of the top ply (fig. 6(a)) was nonlinear. When the applied stress ratio

reached 0.44, the developed stresses were 7.6 ksi, less than the allowable tensile stength of 12.3 ksi. The stress-strain behavior

of the fiber (fig. 6(b)) was linear. When the applied stress ratio reached 0.44, the developed stresses were much lower than the

allowable compressive strength of 242.7 ksi. The matrix microstresses were linear in region A (fig. 6(c)). At a stress ratio of

0.44 the developed stresses were 37 ksi, less than the allowable tensile strength of 42.95 ksi. The stress-strain relation of the

matrix was linear in region C (fig. 6(d)). At a stress ratio of 0.44 the developed compressive stresses were 12 ksi, less than the

allowable compressive strength of 42.95 ksi.

Longitudinal behavior of middle (90 ° ) ply: The longitudinal stress-strain behavior of the middle (90 ° ) ply, as well as of its

consituent fiber and matrix, is shown in figure 7. The ply stress-strain behavior was nonlinear (fig. 7(a)). At a stress ratio of

0.37 the middle ply fractured in the transverse direction within the matrix in region C. At an applied stress ratio of 0.44 the

developed compressive stresses were 6.5 ksi, less than the allowable compressive strength of 47.54 ksi. The fiber stress-strain

behavior was linear (fig. 7(b)). At a stress ratio of 0.44 the developed compressive stresses were 213 ksi, less than the allow-
able compressive strength of 223.6 ksi. The matrix stess-strain behavior for both regions A and C is shown in figure 7(c). At a

stress ratio of 0.44 the developed mierostresses were 32.7 ksi, less than the allowable strength of 39.7 ksi.

Transverse stress-strain behavior of middle (90 °) ply: The transverse stress-strain behavior of the 90 ° ply and its constituent

fiber and matrix are shown in figure 8. The ply stress-strain behavior was nonlinear (fig. 8(a)). At the indicated point M4 at a
stress ratio of 0.37 the matrix fractured in the transverse direction in region C, and at the failure point at a stress ratio of 0.44 the

ply fractured. The developed stresses of 28.2 ksi were greater than the tensile strength of 11.32 ksi. The linear stress-strain



behaviorof thefiber is shown in figure 8(b). At a stress ratio of 0.44 the developed stresses were 39.6 ksi, less than the allow-

able strength of 171.9 ksi. The matrix stress-strain behavior at region A was linear (fig. 8(c)). Fracture occurred at the indi-

cated point M1 when the stress ratio was 0.11. The developed stresses were slightly higher than the allowable strength of
40.21 ksi. The stress-strain behavior of the matrix in region C was also linear (fig. 8(d)). Failure occurred at the indicated

point M4. The developed stresses of 45 ksi were greater than the allowable strength of 39.7 ksi.

Longitudinal behavior of bottom (0 °) ply: The longitudinal stress-strain behavior of this 0° ply, as well as of its constituent
fiber and matrix, is shown in figure 9. The ply stress-strain behavior was nonlinear (fig. 9(a)). At an applied stress ratio of 0.44

the developed stresses were 76.2 ksi, less than the allowable strength of 143.4 ksi. The fiber stress-strain behavior was linear

(fig. 9(b)). The fiber failed at a stress ratio of 0.44 (failure point). The developed microstresses slightly exceeded the allowable

strength of 143.4 ksi. The matrix stress-strain behavior for both regions A and C was linear (fig. 9(c)). The matrix failed at a

stress ratio of 0.37 (point M4). The developed stresses of 33.21 ksi were slightly greater than the allowable strength of
33.15 ksi.

Transverse stress-strain behavior of bottom (0 °) ply: The transverse stress-strain behavior of this 0 ° ply, as well as of its

constituent fiber and matrix, is shown in figure 10. The ply stress-strain behavior was nonlinear (fig. 10(a)). At a stress ratio of

0.44 the developed stresses were 7.36 ksi, less than the allowable strength of 9.45 ksi. The fiber stress-strain behavior was

linear (fig. 10(b)). At a stress ratio of 0.44 the developed compressive stresses were 11 ksi, less than the allowable compressive

strength of 186.5 ksi. The stress-strain behavior of the matrix in region C was also linear (fig. 10(c)). At an applied stress of

0.44 the developed compressive stresses were 10.8 ksi, less than the allowable compressive strength of 33 ksi. The stress-strain

behavior of the matrix in region A is not shown because premature fracture occurred in this region prior to monotonic tensile
loading.

Influence of loading histo .ry on allowable strength of ply and its constituents.--The effect of processing, thermocycling, and

monotonic tensile loading on the allowable strength is shown in figures 11 and 12. The allowable strengths in the longitudinal

and transverse directions for the different plies (top, middle, and bottom) are shown in figure 11. The allowable fiber and

matrix strengths in the longitudinal direction for the different plies (top, middle, and bottom) are shown in figure 12. The most

severe type of loading was thermocycling. It is responsible for the strength degradation, because the applied number of thermal

cycles was very high, equal to 75 percent of the allowable by default in METCAN.

Bending Load

Evolution of fracture in composite.--Prior to monotonic bending loading the therm0mechanical load was applied (fig. 13),

and local fracture began in the transverse direction within the matrix of the bottom ply, in region A. When the monotonic

bending load Mxx was applied and the moment ratio Mxx/M, where

M = (Matrix tensile strengthXComposite thickness) 2
6

was 0.26, local fracture occurred in the longitudinal direction within the matrix of the bottom ply in regions A and C. When the

moment ratio was 0.95, the fibers fractured in the longitudinal direction in the top and bottom plies. Then the composite frac-
tured because it could not catty any additional load.

The evolution of the fracture that took place in the composite due to the quasi-static bending load is shown in tables V and VI

for the matrix and fibers, respectively. Note that the results shown in the tables are referred to the material coordinates 1, 2, and

3 but the evolution of the fracture in the composite is referred to the global coordinates x, y, and z.

Stress-strain behavior of plies and constituent materials .--The behavior of the developed bending moment versus the curva-

ture in the x direction of the composite is shown in figure 14. The indicated points M1, M2, M3, and Failure correspond to

applied moment ratios of 0.26, 0.85, 0.90, and 0.95, respectively. When the stress ratio reached 0.95, the composite fractured.

Top (0 °) ply: The longitudinal stress-strain behavior of this 0 ° ply and of its constituent fiber and matrix is shown in fig-

ure 15; and transverse stress-strain behavior, in figure 16. The stress-strain behavior of the ply was linear (fig. 15(a)). At a



momentratioof 0.95 the ply developed compressive stresses of 107.1 ksi, greater than the allowable compressive strength of

26.02 ksi and fractured (failure point in fig. 15(b)). The fiber stress-strain behavior was linear (fig. 15(b)). At the indicated
failure point at a moment ratio of 0.95 the fiber fractured because the developed fiber compressive stresses of 243 ksi were

greater than the allowable compressive strength of 242.3 ksi. The matrix stress-strain behavior in both regions A and C was

linear (fig. 15(c)). At a moment ratio of 0.95 the developed matrix compressive stresses were 40 ksi, less than the allowable

compressive strength of 43.3 ksi.

The transverse stress-strain behavior of the top (0 °) ply and its constituents is shown in figure 16. The stress-strain behavior

of the ply was linear (fig. 16(a)). At a moment ratio of 0.95 the developed stresses in the ply were 4.3 ksi, less than the allow-

able strength of 12.4 ksi. The fiber stress-strain behavior was also linear (fig. 16(b)). At a moment ratio of 0.95 the developed
compressive stresses were 14 ksi, much less than the allowable compressive strength of 243 ksi. The stress-strain behavior of

the matrix in region A was linear (fig. 16(c)). At a moment ratio of 0.95 the developed stresses in the matrix were 34 ksi, less

than the allowable strength of 43.3 ksi. The matrix stress-strain behavior in region C was linear (fig. 16(d)). At a moment ratio

of 0.95 the developed compressive stresses in region C were equal to 14 ksi, less than the allowable compressive strength of
43 ksi.

Middle (90 ° ) ply: The longitudinal stress-strain behavior of the middle ply and its constituents is shown in figure 17. The
stress-strain behavior of the ply was nonlinear (fig. 17(a)). At the indicated point M1 (moment ratio, 0.26) the matrix failed in

both regions A and C in the bottom ply. At the indicated point M2 the moment ratio was 0.86. When the moment ratio reached

0.95, the developed compressive stresses in the ply were 5.2 ksi, much less than the allowable compressive strength of 47.9 ksi.

The stress-strain behavior of the fiber was linear (fig. 17(b)). At a moment ratio of 0.95 the developed compressive stresses in

the fiber were 52.9 ksi, much less than the allowable compressive strength of 223.6 ksi. The matrix stress-strain behavior was

linear for both regions A and C (fig. 17(c)). When the moment ratio reached 0.95, the developed stresses in the matrix were

27.5, less than the allowable strength of 40 ksi.

The transverse stress-strain behavior of the middle (90 °) ply and its constituents is shown in figure 18. The ply had linear

stress-strain behavior (fig. 180)). When the moment ratio reached 0.95, the developed ply stresses (13.6 ksi) were greater than
the allowable ply strength (11.43 ksi) and failure occurred. The fiber had linear stress-strain behavior (fig. 1809)). At a

moment ratio of 0.95 the developed fiber stresses (~19.4 ksi) almost equaled the allowable fiber strength (19.4 ksi). The matrix

stress-strain behavior was linear in both regions A (fig. 18(c)) and C (fig. 18(d)). At a moment ratio of 0.95 the developed
stresses in both regions were less than the allowable strength (39.9 ksi).

Bottom (0 °) ply: The longitudinal stress-strain behavior of the bottom ply and its constituents is shown in figure 19. The

stress-strain behavior of the ply was nonlinear (fig. 19(a)). At a stress ratio of 0.95 the developed ply stresses (77 ksi) were less

than the allowable strength (143.5 ksi). The fiber stress-strain behavior was linear (fig. 19(19)). At a moment ratio of 0.95 the

developed fiber stresses (143.8 ksi) were slightly higher than the allowable strength (143.5 ksi) and the fiber fractured. The

stress-strain behavior of the matrix in regions A and C was linear (fig. 19(c)). At the indicated point Ml (moment ratio, 0.26)

the developed stresses (33.7 ksi) in the matrix were slightly higher than the allowable strength (33.6 ksi) and failure occurred.

The transverse stress-strain behavior for the bottom (0 °) ply and its constituents is shown in figure 20. The stress-strain

behavior of the ply was nonlinear (fig. 20(a)). At a moment ratio of 0.95 the developed ply stresses (6.03 ksi) were less than
the allowable strength (9.5 ksi). The fiber stress-strain behavior was linear (fig. 20(b)). At a moment ratio of 0.95 the devel-

oped fiber compressive stresses (11.2 ksi) were much less than the allowable compressive strength (186.6 ksi). The stress-

strain behavior of the matrix in region C was also linear (fig. 20(c)). At a moment ratio of 0.95 the developed compressive
stresses in the matrix (11.1 ksi) were less than the allowable compressive strength (33 ksi).

Influence of loading h!story on allowable strength of ply and its constituents.--The effect of processing, thermocycling, and
monotonic tensile loading on the allowable strength is shown in figures 21 and 22. The most severe type of loading is

thermocycling. It is responsible for the strength degradation because the applied number of thermal cycles were very high,
equal to 75 percent of the allowable by default in METCAN.

The allowable strengths in the longitudinal and transverse directions for the different plies (top, middle, and bottom) are

shown in figure 21. The allowable strength in the longitudinal direction for the constituents is shown in figure 22.



CONCLUSIONS

The nonlinear behavior of a metal-matrix composite subjected to the fabrication process, to combined cyclic thermal and
bending loading, and finally to a monotonic load to fracture was simulated computationally by METCAN.

The stress-strain behavior of the composite and its constituents was simulated from the micromechanical and macromech-

anical points of view. It was shown that the behavior of the composite, the initiation of fracture, and the final failure of the

composite depended on the type of loading that was applied on the composite. Under both types of loading (uniaxial tensile
and bending loading) failure started in the matrices of the different plies and propagated to the fibers. When the fibers frac-
tured, the composite lost its strength and fractured.

Thermomechanical cycling severely degraded the constituents' properties.

Finally, it was shown that the sequence/hierarchy of fracture modes can be identified in composite laminates subjected to
different types of loading.
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APPENDIX--SYMBOLS

heat capacity

modulus of elasticity

shear modulus

heat conductivity

bending moment per unit width

uniaxial tensile force per unit width

property

pressure

strength in compression in i direction, where i -- 1,2

strength in tension in i direction, where i = 1,2

strength in shear in lk plane, where k = 2,3

temperature

melting temperature

time constant

global coordinate system axes

composite material coordinate system axes

coefficient of thermal expansion in i direction, where i = 1,2

normal microstresses in i direction, where i -- 1,2 in the regions A and C, respectively, in matrix

normal microstresses in i direction, where i = 1,2,3 in fiber

Poisson's ratio in l i direction, where i -- 2,3
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TABLE I.--FIBER AND MATRIX PROPERTIES AT

ROOM TEMPERATURE

Property a Fiber Matrix

(SIC) (Ti-15-3)

Tm_ °F

E11' Mpsi

E22, Mpsi

v 12' in./in.

v 13, in.fin.

GI2 , Mpsi

G23, Mpsi

a I 1, ppng°F

a 22' pprn/°F

K 11' Btu/hr in. °F

K22 , Btu/hr in. °F
C, Btu/Ib

SllT, ksi

SllC, ksi

S22T, ksi

$22c, ksi

S12c, ksi

$23c, ksi

4870.00

62.00

62.00

0.30

0.30

23.80

23.80

1.80

1.80

0.75

0.75

0.29

500.00

650.00

500.00

650.00

300,00
300.00

3000.00

12.30

12.30

0.32

0.32

4.66

4.66

4.50

4.50

0.39

0.39

0.12

130.00

130.00

130.00

130.00

91.00

91.00

aSee appendix for definitions.

TABLE II.--EXPONENTS FOR CONSTITUENT MATERIALS

[From multifactor interaction relationship (fig. 2).]

(a) Fiber

Property

Elastic modulus, E

Poisson's ratio, v

Strength, S

Coefficient of thermal expansion, a

Heat conductivity, K

Exponent

n m ¢ p q r

0.25 0.25 0.25 0.50 0.50 0.50

0.25 0.25 0.25 0.50 0.50 0.50

0.25 0.00 0.25 0.50 0.50 0.50

0.25 0.00 0.25 0.50 0.50 0.50
0.25 0.00 0.25 0.50 0.50 0.50

Co) Matrix

Property

Elastic modulus, E

Poisson's ratio, v

Strength, S
Coefficient of thermal expansion, a

Heat conductivity, K

Exponent

n m e p q r

0.50 0.50 0.50 0.50 0.50 0.50

0.50 0.50 0.50 0.50 0.50 0.50

0.50 0.00 0.50 0.50 0.50 0.50

0.17 0.00 0.50 0.50 0.50 0.50

0.50 0.00 0.50 0.50 0.50 0.50



TABLE III.--EVOLUTION OF LOCAL FRACTURE IN MATRIX

MATERIAL DUE TO UNIAXIAL TENSILE LOAD

Stress

ratio

0.11

0.15

0.36

0.37

0.44

Ply
number

1
2

3

Longitudinal direction a

o'11 A trll C

(c) (c)

(c) (c)

(c) (c)

(c) (c)

(c) (c)

(c) (c)

(c) (c)
(c) (c)

Transverse direction b

_22A tr22C

(c) ---

(d) ---

(c) ---

(d) ---

(c) ---

(d) ---

(c) (c)

(d) ---

(c) (c)

(d) ---

Point

on

fig. 4

M1

M2

M3

M4

Failure

a°'l 1A and tr 11C are the normal microstresses in the 1-direction (longitudinal direction)
in regions A and C, respectively, in the matrix.

bo'22 A and o'22 C are the normal microstresses in the 2-direction (transverse direction) in

regions A and C, respectively, in the matrix.

CFailure occurred in region A or C in the matrix.

dFailure occurred in the matrix prior to monotonic loading.

TABLE IV.--EVOLUTION OF LOCAL FRACTURE IN FIBER

MATERIAL DUE TO UNIAXIAL LOAD

Stress

ratio

0.44

Ply
number

o'11

(b)

Uniaxial load a

tr22 o'33

Point

on

fig. 4

Failure

a°"11,cr22, and or33 are the normal microstresses in the fiber in the
directions 1-1, 2-2, and 3-3, respectively.

bFailure occurred in the fiber.

10



TABLEV.--EVOLUTIONOFLOCALFRACTUREINMATRIXMATERIAL
DUETOQUASI=STATIC BENDING LOAD

Moment

ratio

0.26

0.86

0.90

0.95

Ply
number

1

2

3

1

2

3

1

2

3

1

2

3

Longitudinal direction a Transverse direction b Point

on

fig. 14

M1

gilA 0.11C

(c) (c)

(c) (c)

(c) (c)

(c) (c)

0.22A _r22C

(d) ---

(d) --

(d) ---

(d) ---

M2

M3

Failure

a0.11A and tr I IC are the normal microstresses in the 1-direction (longitudinal direction)
in regions A and C, respectively, in the matrix.

b0.22 A and cr22 C are the normal microstresses in the 2-direction (transverse direction) in

regions A and C, respectively, in the matrix.
CFailure occurred in region A or C in the matrix.

dFailure occurred in the matrix prior to monotonic loading.

TABLE VI.--EVOLUTION OF LOCAL FRACTURE IN FIBER

MATERIAL DUE TO QUASI-STATIC BENDING LOAD

Moment

ratio

0.95

Ply
number

1

2

3

Bending load a

or I 1 0"22

0_) --

Co)

0"33

, =.

Point

on

fig. 14

Failure

a_rl 1, 0"22, and 0.33 are the normal microstresses in the fiber in the
directions 1-1, 2-2, and 3-3, respectively.

bFailure occurred in the fiber.
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"Syntheals"

Finite element __

/

t Laminatetheory

Ply

Component

Global
structural
analysis

Material properties
P (a, T, t)

P

9-

T

Nonlinear I
material

model

Composite _
micromechanlcs

theory

Constituents

f

_, Finite element

\
Laminate

LaminatetheoryJ

Ply

Composite
micromechanics

theory

Figure 1--Integrated approach to metal-matrix composite (MMC) analysis incorporated in METCAN

"Decomposition"

p fT_-T1"_-o lm_s,-" 1'lt,-'r "l'l'.r. 1"L

NMF_NM q NTF_NT r tF_I •

Rationale:

• Gradual effects during most of range, rapidly degrading near final stages
• Representative of In sltu behavior for fiber, matrix, Intarphase, and coating
• Introduction of primitive variables (PV)
• Consistent In situ representation of all constituent properties in terms of PV
• Room-temperature values for reference properties
• Continuous intarphese growth
• Simultaneous interaction of all primitive variables
• Adaptable to new materials
• Amenable to verification inclusive of all properties
• Readily adaptable to incremental computational simulation

Notations:

3

l [-- Matrix
_=-Intarphasa

Intralemlner
nonunifocmlty --<

P - property; T - temperature; S - strength; R - metallurgical reaction; N - number of cycles; t - time;
D - diameter; overdot - rate; subscripts: 0 - reference; F - final; M - mechanical; T - thermal

Figure 2.--Assumed multlfactor Interaction relationship to represent various factors that influence In sltu
constituent materials behavior.
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I,/ _rLTJ/j .4-- Bottom (0°) ply

l t/4 I I I I I I I I I 17J/__
t : 0.2 In. t/2 }01010_10i010]010_7 2

I I I

i _ i I I
Tc JL__rocesslng I Thermal cycling I I

__. 0.57T© _ I (0;75 Ntf cyclN,) I I'0.04 Tc sore lemporatur_

I t ,-
0 I I I I I Time

I i I

(a) Thermal load: T¢ = 1750 °F; Ntf= 400 cycles.

I
I I

t Bending cycling I

(0.01 Nmf cycles) I0.45Mu i " " ' I

I1

0 I Time

(b) Bending load: M u = 850.67 Ib in./ln. (= a ultat"t _6);

Nmf = 100 cycles.
I I
I I

'; 0.5 Nu Nxx !li
1

z

0 Time

(c) Uniaxlel tensile load: Nu : 26 000 Ib/in. (= (; u# * pmet _"

Figure 3.--First case of loading.

60 E M4

I/ I I I 1 I
0 .2 .4 .6 .8 1.0

Composite strains In x-direction,

percent

Figure 4._mposlte stress

versus composite strain.
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(a) Ply stresses.

i+
150

IO0

SO

0

.._ -.5o
0 .2 .4 .6 .8 1.0 1.2

(b) Fiber mlcrostresses.

42

38

34

3O

26

22

M3

I
.5 .6 .7 .8 .9 1.0 1.1 1.2

Longitudinal strain, percent

(C) Matrix mlcrostresses at
regions A and C.

Figure 5.--Longitudinal stress-
strain curves for top (0°) ply and
Its fiber and matdx (region A).
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-.60 -.58 -.56 -.54

(a) Ply stresses.

] -12 . I

i -.020 -.016 -.012 -.008 -.004 0
(b) Fiber mlcrostresses.

[ !
_._ .U .so .s2 ._ .56

(c) Matrix microstresses in
region A.

-10

-12 I
-.14 -.10 -.06 --.02

Transverse strains, percer_

(d) Matrix mlcrostresses in
region C.

Figure 6.--Transverse stress-
strain curves for top (0 °) ply
and ils fiber end matrix
(regions A and C).
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-7 l I I
-.58 -.57 -.56 -.55

(a) Ply stresses.

30 _ .---Fallum

10

-.6 -.4 -.2 0 .2 .4

(a) Ply stresses.

(b) Fiber mlcrosiresses.

.3 .4 .5 .6 .7

Longitudinal strains, percent

(c) Matrix mlcrostresses in
regions A and C.

Figure 7.--Longitudinal stress-

strain curves for middle (90 °)

ply and its fiber and matrix

(regions A and C).

1

"_ -10 / I I I I I I

i -.050 0 .050 .100 .150 .200 .250
(b) Fiber mlcrostrsssss.

3O I I I I J
.40 .45 .50 .55 .60 .65

(C) Matrix mlcrcstresses in

region A.

:f4lii
-I fl I I l

-.4 0 .4 .8 1.2

Transverse strains, percent

35

3O

25

2O

J
1.6

(d) Matrix microstresses in

region C.

Figure 8.--Transverss stress-
strain curves for middle (90 °)

ply and Its fiber snd matrix

(regions A and C).
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(a) Ply stresses.
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(b) Fiber mlcrostresses.
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35
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f 4I
f I I I
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Longitudinal strains, percenl

(c) Matrix mlcrostresses

In regions A end C.

Figure 9.--Longitudinal
stress-strain curves for

bottom (0 °) ply and Its

flb_ and matrix (regions

A indC).

6,5
-.655 --.652 -.649 -.646

(a) Ply stresses.

i-
(b) Fiber microstresses.

-7 Fsllum

_, /7"
-10

-11 I

-.1 -.01 -.001

Transverse strain,=, percent

(C) Matrix mlcrostresses In
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Figure lO.--Transverse stress-

strain curves for bottom (0 °)

ply and its fiber and matrix

(region C).
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Figure 11.--Tensile strength for different plies.
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(n) Fiber tensile strength in longitudinal direction (1-direction).
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(b) Matrix tensile strength In longitudinal direction (1-direction).

Figure 12._ongitudinsi tensile strength for fiber and matrix of

different plies.
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(b) Banding load. M u - 866.67 Ib In.Jln.

Figure 13.--Second case of loading•
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Figure 14.---Moment versus
curvature.
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(c) Matrix mlcrostresses in
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Figure 15.---Longitudinal stress-

strain curves for top (0 °) ply
and its fiber and matrix

(regions A and C).

]8



5.5

5.0

4.5

4.0 I I I I I
-.54 -.52 -.50 -.48 -.46 -.44
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Figure 16.--Transverse stress-

strain curves for top (0 °) ply
end its fiber end matrix

(regions A end C).

(c) Matrix mlcrostresses in

reglons A and C.

Figure 17._Longltudlnsl sb'ese-
strain curves for middle (90 °)

ply and its fiber and matrix

(regions A end C).
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Figure 18.--Trensverss stress-

strain curves for middle (90 °)
ply end Its fiber end matrix

(regions A and C).
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Figure 19.mLongitudlnal stress-

strain curves for bottom (0 °)

ply and Its fiber and matrix

(regions A and C).
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Figure 20._Trensverse stress-

strain curves for bottom (0 °)

ply end its fiber end matrix
(region C).
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Figure 21.lTenslle strength for different plies.
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